The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0131125
PDF

Cybersecurity in Deep Learning Techniques: Detecting Network Attacks

Author 1: Shatha Fawaz Ghazal
Author 2: Salameh A. Mjlae

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 11, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Deep learning techniques have been found to be useful in a variety of fields. Cybersecurity is one such area. In cybersecurity, both Machine Learning and Deep Learning classification algorithms can be used to monitor and prevent network attacks. Additionally, it can be utilized to identify system irregularities that may signal an ongoing attack. Cybersecurity experts can utilize machine learning and deep learning to help make systems safer. Eleven classification techniques, including eight machine learning algorithms (Decision Tree, Random Forest, and Gradient Boosting) and one statistical technique, were employed to examine the popular HTTP DATASET CSIC 2010. (K-Means). Along with XGBoost, AdaBoost, Multilayer Perceptrons, and Voting, three deep learning algorithms are Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and LSTM plus CNN. To evaluate the performance of such models, precision, accuracy, f1-score, and recall are often used metrics. The results showed that when comparing the three deep learning algorithms by the aforementioned metrics, the LSTM with CNN produced the best performance outcomes in this paper. These findings will show that our use of this algorithm allows us to detect multiple attacks and defend against any external or internal threat to the network.

Keywords: HTTP DATASET CSIC 2010; deep learning; cybersecurity attacks; detection attacks; network attacks

Shatha Fawaz Ghazal and Salameh A. Mjlae, “Cybersecurity in Deep Learning Techniques: Detecting Network Attacks” International Journal of Advanced Computer Science and Applications(IJACSA), 13(11), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0131125

@article{Ghazal2022,
title = {Cybersecurity in Deep Learning Techniques: Detecting Network Attacks},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0131125},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0131125},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {11},
author = {Shatha Fawaz Ghazal and Salameh A. Mjlae}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org