The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0131141
PDF

Low-rate DDoS attack Detection using Deep Learning for SDN-enabled IoT Networks

Author 1: Abdussalam Ahmed Alashhab
Author 2: Mohd Soperi Mohd Zahid
Author 3: Amgad Muneer
Author 4: Mujaheed Abdullahi

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 11, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Software Defined Networks (SDN) can logically route traffic and utilize underutilized network resources, which has enabled the deployment of SDN-enabled Internet of Things (IoT) architecture in many industrial systems. SDN also removes bottlenecks and helps process IoT data efficiently without overloading the network. An SDN-based IoT in an evolving environment is vulnerable to various types of distributed denial of service (DDoS) attacks. Many research papers focus on high-rate DDoS attacks, while few address low-rate DDoS attacks in SDN-based IoT networks. There’s a need to enhance the accuracy of LDDoS attack detection in SDN-based IoT networks and OpenFlow communication channel. In this paper, we propose LDDoS attack detection approach based on deep learning (DL) model that consists of an activation function of the Long-Short Term Memory (LSTM) to detect different types of LDDoS attacks in IoT networks by analyzing the characteristic values of different types of LDDoS attacks and natural traffic, improve the accuracy of LDDoS attack detection, and reduce the malicious traffic flow. The experiment result shows that the model achieved an accuracy of 98.88%. In addition, the model has been tested and validated using benchmark Edge IIoTset dataset which consist of cyber security attacks.

Keywords: SDN; LDDoS attack; OpenFlow; Deep Learning; Long-Short Term Memory

Abdussalam Ahmed Alashhab, Mohd Soperi Mohd Zahid, Amgad Muneer and Mujaheed Abdullahi, “Low-rate DDoS attack Detection using Deep Learning for SDN-enabled IoT Networks” International Journal of Advanced Computer Science and Applications(IJACSA), 13(11), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0131141

@article{Alashhab2022,
title = {Low-rate DDoS attack Detection using Deep Learning for SDN-enabled IoT Networks},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0131141},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0131141},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {11},
author = {Abdussalam Ahmed Alashhab and Mohd Soperi Mohd Zahid and Amgad Muneer and Mujaheed Abdullahi}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org