The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0131142
PDF

Stock Price Forecasting using Convolutional Neural Networks and Optimization Techniques

Author 1: Nilesh B. Korade
Author 2: Mohd. Zuber

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 11, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Forecasting the correct stock price is intriguing and difficult for investors due to its irregular, inherent dynamics, and tricky nature. Convolutional neural networks (CNN) have impressive performance in forecasting stock prices. One of the most crucial tasks when training a CNN on a stock dataset is identifying the optimal hyperparameter that increases accuracy. In this research, we propose the use of the Firefly algorithm to optimize CNN hyperparameters. The hyperparameters for CNN were tuned with the help of Random Search (RS), Particle Swarm Optimization (PSO), and Firefly (FF) algorithms on different epochs, and CNN is trained on selected hyperparameters. Different evaluation metrics are calculated for training and testing datasets. The experimental finding demonstrates that the FF method finds the ideal parameter with a minimal number of fireflies and epochs. The objective function of the optimization technique is to reduce MSE. The PSO method delivers good results with increasing particle counts, while the FF method gives good results with fewer fireflies. In comparison with PSO, the MSE of the FF approach converges with increasing epoch.

Keywords: Convolutional neural networks; swarm intelligence; random search; particle swarm optimization; firefly

Nilesh B. Korade and Mohd. Zuber, “Stock Price Forecasting using Convolutional Neural Networks and Optimization Techniques” International Journal of Advanced Computer Science and Applications(IJACSA), 13(11), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0131142

@article{Korade2022,
title = {Stock Price Forecasting using Convolutional Neural Networks and Optimization Techniques},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0131142},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0131142},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {11},
author = {Nilesh B. Korade and Mohd. Zuber}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org