The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0131174
PDF

Deeply Learned Invariant Features for Component-based Facial Recognition

Author 1: Adam Hassan
Author 2: Serestina Viriri

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 11, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Face recognition underage variation is a challenging problem. It is a difficult task because ageing is an intrinsic variation, not like pose and illumination, which can be controlled. We propose an approach to extract invariant features to improve facial recognition using facial components. Can facial recognition over age progression be improved by resizing independently each individual facial component? The individual facial components: eyes, mouth, and nose were extracted using the Viola-Jones algorithm. Then we utilize the eyes region rectangle with upper coordinates to detect the forehead and lower coordinates with the nose rectangle to detect the cheeks. The proposed work uses Convolutional Neural Network with an ideal input image size for each facial component according to many experiments. We sum up component scores by applying weighted fusion for a final decision. The experiments prove that the nose component provides the highest score contribution among other ones, and the cheeks are the lowest. The experiments were conducted on two different facial databases- MORPH, and FG-NET databases. The proposed work achieves a state-of-the-art accuracy that reaches 100% on the FG-NET dataset and the results obtained on the MORPH dataset outperform the accuracy results of the related works in the literature.

Keywords: Invariant features; facial components; facial recognition; convolutional neural network; weighted fusion

Adam Hassan and Serestina Viriri, “Deeply Learned Invariant Features for Component-based Facial Recognition” International Journal of Advanced Computer Science and Applications(IJACSA), 13(11), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0131174

@article{Hassan2022,
title = {Deeply Learned Invariant Features for Component-based Facial Recognition},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0131174},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0131174},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {11},
author = {Adam Hassan and Serestina Viriri}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org