The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0131177
PDF

The Best Techniques to Deal with Unbalanced Sequential Text Data in Deep Learning

Author 1: Sumarni Adi
Author 2: Awaliyatul Hikmah
Author 3: Bety Wulan Sari
Author 4: Andi Sunyoto
Author 5: Ainul Yaqin
Author 6: Mardhiya Hayaty

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 11, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Datasets with a balanced distribution of data are often difficult to find in real life. Although various methods have been developed and proven successful using shallow learning algorithms, handling unbalanced classes using a deep learning approach is still limited. Most of these studies only focus on image data using the Convolution Neural Network (CNN) architecture. In this study, we tried to apply several class handling techniques to three datasets of unbalanced text data. Both use a data-level approach with resampling techniques on word vectors and algorithm-level using Weighted Cross-Entropy Loss (WCEL) to handle cases of imbalanced text classification. With Bidirectional Long-Short Term Memory (BiLSTM) architecture. We tested each method using three datasets with different characteristics and levels of imbalance. Based on the experiments that have been carried out, each technique applied has a different performance on each dataset.

Keywords: Imbalanced text classification; deep learning; resampling technique; weighted cross-entropy loss

Sumarni Adi, Awaliyatul Hikmah, Bety Wulan Sari, Andi Sunyoto, Ainul Yaqin and Mardhiya Hayaty, “The Best Techniques to Deal with Unbalanced Sequential Text Data in Deep Learning” International Journal of Advanced Computer Science and Applications(IJACSA), 13(11), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0131177

@article{Adi2022,
title = {The Best Techniques to Deal with Unbalanced Sequential Text Data in Deep Learning},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0131177},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0131177},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {11},
author = {Sumarni Adi and Awaliyatul Hikmah and Bety Wulan Sari and Andi Sunyoto and Ainul Yaqin and Mardhiya Hayaty}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2025

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org