The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0131196
PDF

COVIDnet: An Efficient Deep Learning Model for COVID-19 Diagnosis on Chest CT Images

Author 1: Briskline Kiruba S
Author 2: Murugan D
Author 3: Petchiammal A

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 11, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: A novel coronavirus disease (COVID-19) has been a severe world threat to humans since December 2020. The virus mainly affects the human respiratory system, making breathing difficult. Early detection and Diagnosis are essential to controlling the disease. Radiological imaging, like Computed Tomography (CT) scans, produces clear, high-quality chest images and helps quickly diagnoses lung abnormalities. The recent advancements in Artificial intelligence enable accurate and fast detection of COVID-19 symptoms on chest CT images. This paper presents COVIDnet, an improved and efficient deep learning Model for COVID-19 diagnosis on chest CT images. We developed a chest CT dataset from 220 CT studies from Tamil Nadu, India, to evaluate the proposed model. The final dataset contains 5191 CT images (3820 COVID-infected and 1371 normal CT images). The proposed COVIDnet model aims to produce accurate diagnostics for classifying these two classes. Our experimental result shows that COVIDnet achieved a superior accuracy of 98.98% when compared with three contemporary deep learning models.

Keywords: Coronavirus disease; reverse transcription poly-merase chain reaction; computed tomography; deep learning

Briskline Kiruba S, Murugan D and Petchiammal A, “COVIDnet: An Efficient Deep Learning Model for COVID-19 Diagnosis on Chest CT Images” International Journal of Advanced Computer Science and Applications(IJACSA), 13(11), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0131196

@article{S2022,
title = {COVIDnet: An Efficient Deep Learning Model for COVID-19 Diagnosis on Chest CT Images},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0131196},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0131196},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {11},
author = {Briskline Kiruba S and Murugan D and Petchiammal A}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org