The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.01312119
PDF

Filtering and Enhancement Method of Ancient Architectural Decoration Image based on Neural Network

Author 1: Yanan Wang

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 12, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Due to poor ambient light or uneven lighting, the old decoration image acquisition methods are easy to cause the image blur. To solve this problem, this paper proposes a neural network-based filtering enhancement method for ancient architectural decoration images, which preserves image details by enhancing contrast, smoothing noise reduction and edge sharpening. Based on the convolutional neural network which is composed of encoder, decoder and layer hop connection, the residual network and hole convolution are introduced, and the hole U-Net neural network is constructed to fuse the pixel feature blocks of different levels. This method enhanced the image contrast according to the gray level and frequency histogram, and aiming at the gray value of the pixel to be processed in the image. And the middle value of the gray value of the neighborhood pixel is used to filter the noise of the ancient building decoration image. The paper also analyzes the joint strength of beams and columns in ancient buildings, and calculates the elastic constants of beams and columns and the stress at the joint of them, considering the image texture characteristics of the wood in ancient buildings with the mortise and tenon connection of beams and columns. Experimental results show that the proposed method has good noise suppression performance, can effectively obtain image detail features, and significantly improve the subjective visual effect of ancient architectural decoration images.

Keywords: Neural network; decorative images of ancient buildings; filter enhancement method; encoder; decoder; pixel gray value

Yanan Wang, “Filtering and Enhancement Method of Ancient Architectural Decoration Image based on Neural Network” International Journal of Advanced Computer Science and Applications(IJACSA), 13(12), 2022. http://dx.doi.org/10.14569/IJACSA.2022.01312119

@article{Wang2022,
title = {Filtering and Enhancement Method of Ancient Architectural Decoration Image based on Neural Network},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.01312119},
url = {http://dx.doi.org/10.14569/IJACSA.2022.01312119},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {12},
author = {Yanan Wang}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org