The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.01312124
PDF

Research on Improved Xgboost Algorithm for Big Data Analysis of e-Commerce Customer Churn

Author 1: Li Li

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 12, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: With the increasing cost of acquiring new users for e-commerce enterprises, it has become an important task for e-commerce enterprises to actively carry out customer churn management. Therefore, based on the distributed gradient enhancement library algorithm (XGBoost), this research proposes a big data analysis study on e-commerce customer churn. First, it conducts an evaluation analysis on e-commerce customer segmentation and combines the random forest algorithm (RF) to build an RF XGBoost prediction model based on customer churn. Finally, it verifies the performance of the prediction model. The results show that the area under receiver operating characteristic curve (AUC) value, prediction accuracy, recall rate, and F1 value of the RF-XGBoost model are significantly better than those of the RF, XGBoost, and ID3 decision trees to build an e-commerce customer churn prediction model; The average output error of RF-XGBoost model is 0.42, and the average output error is relatively good, indicating that the model proposed in this study has a smaller error and higher accuracy. It can make a general assessment of the customer churn of e-commerce enterprises, and then provide data support for the customer maintenance work of e-commerce enterprises. It is helpful to analyze the relevant factors affecting customer churn, to Equationte targeted customer service programs, thus improving the economic benefits of e-commerce enterprises.

Keywords: E-commerce; customer churn; random Forest; XGBoost; big data

Li Li, “Research on Improved Xgboost Algorithm for Big Data Analysis of e-Commerce Customer Churn” International Journal of Advanced Computer Science and Applications(IJACSA), 13(12), 2022. http://dx.doi.org/10.14569/IJACSA.2022.01312124

@article{Li2022,
title = {Research on Improved Xgboost Algorithm for Big Data Analysis of e-Commerce Customer Churn},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.01312124},
url = {http://dx.doi.org/10.14569/IJACSA.2022.01312124},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {12},
author = {Li Li}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org