The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0131243
PDF

A Novel Approach to Cashew Nut Detection in Packaging and Quality Inspection Lines

Author 1: Van-Hung Pham
Author 2: Ngoc-Khoat Nguyen
Author 3: Van-Minh Pham

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 12, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: YOLO standing for You Only Look Once is one of the most famous algorithms in computer vision used for detecting objects in a real-time environment. The newest version of this algorithm, namely YOLO with the seventh version or YOLOv7, is proposed in the present study for cashew nut detection (good, broken and not peeled) in packaging and quality inspection lines. Furthermore, this algorithm using an efficient convolutional neural network (CNN) to be able to successfully detect and identify unsatisfactory cashew nuts, such as chipped or burnt cashews. In order to deal with the quality inspection process, a new dataset called CASHEW dataset has been built at first by collecting cashew images in environments with different brightness and camera angles to ensure the model's effectiveness. The quality inspection of cashew nuts is tested with a huge number of YOLOv7 models and their effectiveness will also be evaluated. The experimental results show that all models are able to obtain high accuracy. Among them, the YOLOv7-tiny model employs the least number of parameters, i.e. 6.2M but has many output parameters with higher accuracy than that of some other YOLO models. As a result, the proposed approach should clearly be one of the most feasible solutions for the cashew’s quality inspection.

Keywords: Cashew; CNN; cashew detection; YOLOv7; computer vision

Van-Hung Pham, Ngoc-Khoat Nguyen and Van-Minh Pham, “A Novel Approach to Cashew Nut Detection in Packaging and Quality Inspection Lines” International Journal of Advanced Computer Science and Applications(IJACSA), 13(12), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0131243

@article{Pham2022,
title = {A Novel Approach to Cashew Nut Detection in Packaging and Quality Inspection Lines},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0131243},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0131243},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {12},
author = {Van-Hung Pham and Ngoc-Khoat Nguyen and Van-Minh Pham}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org