The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0131251
PDF

Electricity Theft Detection using Machine Learning

Author 1: Ivan Petrlik
Author 2: Pedro Lezama
Author 3: Ciro Rodriguez
Author 4: Ricardo Inquilla
Author 5: Julissa Elizabeth Reyna-González
Author 6: Roberto Esparza

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 12, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: This research work dealt with the indiscriminate theft of electric power, reported as a non-technical loss, affecting electric distribution companies and customers, triggering serious consequences including fires and blackouts. The research focused on recommending the best prediction model using Machine Learning in electrical energy theft. The source of the information on the electricity consumption of 42372 consumers was a dataset published in the State Grid Corporation of China. The method used was data imputation, data balancing (oversampling and under sampling), and feature extraction to improve energy theft detection. Five Machine Learning models were tested. As a result, the accuracy indicator of the SVM model was 81%, K-Nearest Neighbors 79%, Random Forest 80%, Logistic Regression 69%, and Naive Bayes 68%. It is concluded that the best performance, with an accuracy of 81%, is obtained by using the SVM model.

Keywords: Energy theft; non-technical losses; machine learning; support vector machine

Ivan Petrlik, Pedro Lezama, Ciro Rodriguez, Ricardo Inquilla, Julissa Elizabeth Reyna-González and Roberto Esparza, “Electricity Theft Detection using Machine Learning” International Journal of Advanced Computer Science and Applications(IJACSA), 13(12), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0131251

@article{Petrlik2022,
title = {Electricity Theft Detection using Machine Learning},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0131251},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0131251},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {12},
author = {Ivan Petrlik and Pedro Lezama and Ciro Rodriguez and Ricardo Inquilla and Julissa Elizabeth Reyna-González and Roberto Esparza}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org