The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0131266
PDF

Rapid Modelling of Machine Learning in Predicting Office Rental Price

Author 1: Thuraiya Mohd
Author 2: Muhamad Harussani
Author 3: Suraya Masrom

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 12, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: This study demonstrates the utilization of rapid machine learning modelling in an essential case of the real estate industry. Predicting office rental price is highly crucial in the real estate industry but the study of machine learning is still in its infancy. Despite the renowned advantages of machine learning, the difficulties have restricted the inexpert machine learning researchers to embark on this prominent artificial intelligence approach. This paper presents the empirical research results based on three machine learning algorithms namely Random Forest, Decision Tree and Support Vector Machine to be compared between two training approaches; split and cross-validation. AutoModel machine learning has accelarated the modelling tasks and is useful for inexperienced machine learning researchers for any domain. Based on real cases of office rental in a big city of Kuala Lumpur, Malaysia, the evaluation results indicated that Random Forest with cross-validation was the best promising algorithm with 0.9 R squared value. This research has significance for real estate domain in near future, by applying a more in-depth analysis, particularly on the relevant variables of building pricing as well as on the machine learning algorithms.

Keywords: Random forest; decision tree; support vector machine; rapid prediction modelling; office rental price

Thuraiya Mohd, Muhamad Harussani and Suraya Masrom, “Rapid Modelling of Machine Learning in Predicting Office Rental Price” International Journal of Advanced Computer Science and Applications(IJACSA), 13(12), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0131266

@article{Mohd2022,
title = {Rapid Modelling of Machine Learning in Predicting Office Rental Price},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0131266},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0131266},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {12},
author = {Thuraiya Mohd and Muhamad Harussani and Suraya Masrom}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org