The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Hybrid Modeling to Classify and Detect Outliers on Multilabel Dataset based on Content and Context

Author 1: Lusiana Efrizoni
Author 2: Sarjon Defit
Author 3: Muhammad Tajuddin

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2022.0131267

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 12, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Due to the linked various matching categories, news article categorization are a rapidly increasing field of interest in text classification. However, the low-reliability indices and ambiguities related to frequently used province classifiers restrict success in this field. Most of the existing research uses traditional machine learning algorithms. It has weaknesses in training large-scale datasets, and data sparseness often occurs from short texts. Therefore, this study proposed a hybrid model consisting of two models, namely the news article classification and the outlier detection model. The news article classification model used a combination of two deep learning algorithms (Long Short-Term Memory dan Convolutional Neural Network) and outlier classifier model, which was intended to predict the outlier news using a decision tree algorithm. The proposed model's performance was compared against two widely used datasets. The experimental results provide useful insights that open the way for a number of future initiatives.

Keywords: News article classification; machine learning; outlier detection

Lusiana Efrizoni, Sarjon Defit and Muhammad Tajuddin, “Hybrid Modeling to Classify and Detect Outliers on Multilabel Dataset based on Content and Context” International Journal of Advanced Computer Science and Applications(IJACSA), 13(12), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0131267

@article{Efrizoni2022,
title = {Hybrid Modeling to Classify and Detect Outliers on Multilabel Dataset based on Content and Context},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0131267},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0131267},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {12},
author = {Lusiana Efrizoni and Sarjon Defit and Muhammad Tajuddin}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org