The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0131272
PDF

Towards an Accurate Breast Cancer Classification Model based on Ensemble Learning

Author 1: Aya Hesham
Author 2: Nora El-Rashidy
Author 3: Amira Rezk
Author 4: Noha A. Hikal

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 12, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Breast cancer (BC) is considered the most common cancer among women and the major reason for the increased death rate. This condition begins in breast cells and may spread to the rest of the body tissues. The early detection and prediction of BC can help in saving a patient’s life. In the last decades, machine learning (ML) has played a significant role in the development of models that can be used to detect and predict various diseases at an early stage, which can greatly increase the survival rate of patients. The importance of ML Classification is attributed to its capability to learn from previous datasets, detects patterns that are difficult to comprehend in massive datasets, predicts a categorical variable within a predefined example and provide accurate results within a short amount of time. Feature selection (FS) method was used to reduce the data dimensionality and choose the optimal feature set. In this paper, we proposed a stacking ensemble model that can differentiate between malignant and benign BC cells. A total of 25 different experiments have been conducted using several classifiers, including logistic regression (LR), decision tree (DT), linear discriminant analysis (LDA), K-nearest neighbor (KNN), naive Bayes (NB), and support vector machine (SVM). In addition to several ensembles, the classifiers included random forest (RF), bagging, AdaBoost, voting, and stacking. The results indicate that our ensemble model outperformed other state-of-the-art models in terms of accuracy (98.6%), precision (89.7%), recall, and F1 score (93.33%). The result shows that the ensemble methods with FS have a high improvement of classification accuracy rather than a single method in detecting BC accurately.

Keywords: Breast cancer; feature selection; classification; machine learning

Aya Hesham, Nora El-Rashidy, Amira Rezk and Noha A. Hikal, “Towards an Accurate Breast Cancer Classification Model based on Ensemble Learning” International Journal of Advanced Computer Science and Applications(IJACSA), 13(12), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0131272

@article{Hesham2022,
title = {Towards an Accurate Breast Cancer Classification Model based on Ensemble Learning},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0131272},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0131272},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {12},
author = {Aya Hesham and Nora El-Rashidy and Amira Rezk and Noha A. Hikal}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org