The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0131273
PDF

A Deep Learning-based Model for Evaluating the Sustainability Performance of Accounting Firms

Author 1: Cui Hu

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 12, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The harmonious and stable development of society is strongly related to the sustainable development of enterprises. In order to better face the challenges of environmental resources, sustainable development must be included in the development focus of accounting enterprises. The research proposes a performance evaluation model based on deep learning, improves RBMs model on the basis of deep belief network (DBN), improves the accuracy of the model through reverse fine-tuning technology, and effectively combines multiple restricted Boltzmann machines (RBMs) and Softmax classifiers to build a modular multi classification model to complete the sustainable development performance evaluation of accounting enterprises. The performance of RBM fine tuning classifier is higher than that of RBM expression and PCA (Principal Component Analysis) expression, which mainly shows the effectiveness and stability of feature extraction. The network output results of test samples are converted into prediction performance evaluation. The model is evaluated by average precision (AP), average recall (AR), and prediction accuracy. The AP, AR, and prediction accuracy of the proposed method are 86.95%, 89.74%, and 88.29% respectively, which are higher than Softmax classifiers, Back Propagation (BP) neural networks, and DBN based Softmax methods, It shows that this method is superior to other algorithms in the application of performance evaluation model for sustainable development of accounting enterprises, and it is feasible and effective, which is of great significance to the establishment of performance evaluation model for the accounting industry.

Keywords: Deep learning; RBM; performance evaluation; classification accuracy; sustainability

Cui Hu, “A Deep Learning-based Model for Evaluating the Sustainability Performance of Accounting Firms” International Journal of Advanced Computer Science and Applications(IJACSA), 13(12), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0131273

@article{Hu2022,
title = {A Deep Learning-based Model for Evaluating the Sustainability Performance of Accounting Firms},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0131273},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0131273},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {12},
author = {Cui Hu}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org