The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0131297
PDF

Utilizing Deep Learning in Arabic Text Classification Sentiment Analysis of Twitter

Author 1: Nehad M. Ibrahim
Author 2: Wael M. S. Yafooz
Author 3: Abdel-Hamid M. Emara
Author 4: Ahmed Abdel-Wahab

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 12, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The number of social media users has increased. These users share and reshare their ideas in posts and this information can be mined and used by decision-makers in different domains, who analyse and study user opinions on social media networks to improve the quality of products or study specific phenomena. During the COVID-19 pandemic, social media was used to make decisions to limit the spread of the disease using sentiment analysis. Substantial research on this topic has been done; however, there are limited Arabic textual resources on social media. This has resulted in fewer quality sentiment analyses on Arabic texts. This study proposes a model for Arabic sentiment analysis using a Twitter dataset and deep learning models with Arabic word embedding. It uses the supervised deep learning algorithms on the proposed dataset. The dataset contains 51,000 tweets, of which 8,820 are classified as positive, 37,360 neutral, and 8,820 as negative. After cleaning it will contain 31,413. The experiment has been carried out by applying the deep learning models, Convolutional Neural Network and Long Short-Term Memory while comparing the results of different machine learning techniques such as Naive Bayes and Support Vector Machine. The accuracy of the AraBERT model is 0.92% when applying the test on 3,505 tweets.

Keywords: Arabic sentiment analysis; machine learning; convolutional neural networks; word embedding; Arabic word2Vec; long short-term method; AraBERT

Nehad M. Ibrahim, Wael M. S. Yafooz, Abdel-Hamid M. Emara and Ahmed Abdel-Wahab, “Utilizing Deep Learning in Arabic Text Classification Sentiment Analysis of Twitter” International Journal of Advanced Computer Science and Applications(IJACSA), 13(12), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0131297

@article{Ibrahim2022,
title = {Utilizing Deep Learning in Arabic Text Classification Sentiment Analysis of Twitter},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0131297},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0131297},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {12},
author = {Nehad M. Ibrahim and Wael M. S. Yafooz and Abdel-Hamid M. Emara and Ahmed Abdel-Wahab}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org