The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130236
PDF

An Intelligent Metaheuristic Optimization with Deep Convolutional Recurrent Neural Network Enabled Sarcasm Detection and Classification Model

Author 1: K. Kavitha
Author 2: Suneetha Chittineni

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 2, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Sarcasm is a state of speech in which the speaker says something that is externally unfriendly with a purpose of abusing/deriding the listener and/or a third person. Since sarcasm detection is mainly based on the context of utterances or sentences, it is hard to design a model to proficiently detect sarcasm in the domain of natural language processing (NLP). Despite the fact that various methods for detecting sarcasm have been created utilizing statistical machine learning and rule-based approaches, they are unable of discerning figurative meanings of words. The models developed using deep learning approaches have shown superior performance for sarcasm detection over traditional approaches. With this motivation, this paper develops novel deep learning (DL) enabled sarcasm detection and classification (DLE-SDC) model. The DLE-SDC technique primarily involves pre-processing stage which encompasses single character removal, multispaces removal, URL removal, stop word removal, and tokenization. Next to data preprocessing, the preprocessed data is converted into the feature vector by Glove Embeddings technique. Followed by, convolutional neural network with recurrent neural network (CNN-RNN) technique is utilized to detect and classify sarcasm. In order to boost the detection outcomes of the CNN+RNN technique, a hyper parameter tuning process utilizing teaching and learning based optimization (TLBO) algorithm is employed in such a way that the classification performance gets increased. The DLE-SDC model is validated using the benchmark dataset and the performance is examined interms of precision, recall, accuracy, and F1-score.

Keywords: Sarcasm detection; data classification; deep learning; feature extraction; TLBO algorithm; parameter optimization

K. Kavitha and Suneetha Chittineni, “An Intelligent Metaheuristic Optimization with Deep Convolutional Recurrent Neural Network Enabled Sarcasm Detection and Classification Model” International Journal of Advanced Computer Science and Applications(IJACSA), 13(2), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130236

@article{Kavitha2022,
title = {An Intelligent Metaheuristic Optimization with Deep Convolutional Recurrent Neural Network Enabled Sarcasm Detection and Classification Model},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130236},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130236},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {2},
author = {K. Kavitha and Suneetha Chittineni}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org