The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130246
PDF

Machine Learning Model for Prediction and Visualization of HIV Index Testing in Northern Tanzania

Author 1: Happyness Chikusi
Author 2: Judith Leo
Author 3: Shubi Kaijage

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 2, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Human Immunodeficiency Virus Acquired Immunodeficiency Syndrome (HIV AIDS) in Tanzania is still a threatening disease in society. There have been various strategies to increase the number of people to know their HIV status. Among these strategies, HIV index testing has proven to be the best modality for collecting the number of HIV contacts who might be at risk of contracting HIV from an HIV-positive person. However, the current HIV index testing is manual-based, creating many challenges, including errors, time-consuming, and expensive to operate. Therefore, this paper presents the Machine Learning model results to predict and visualise HIV index testing. The development process followed the Agile Software development methodology. The data was collected from Kilimanjaro, Arusha and Manyara regions in Tanzania. A total of 6346 samples and 11 features were collected. Then, the dataset was divided into training sets of 5075 samples and a testing set of 1270 samples (80/20). The datasets were run into Random Forest (RF), XGBoost, and Artificial Neural Networks (ANN) algorithms. The results of the evaluation, by Mean Absolute Errors (MAE), showed that; RF MAE (1.1261), XGBoost MAE (1.2340), and ANN MAE (1.1268.); whereby the RF appeared to have the best result compared to the other two algorithms. Data visualisation shows that 17.4% of males and 82.6 of females had been notified. In addition, the Kilimanjaro region had more cases of people with HIV status from their partners. Overall, this study improved our understanding of the significance of ML in the prediction and visualisation of HIV index testing. The developed model can assist decision-makers in coming out with a suitable intervention strategy towards ending HIV AIDS in our societies. The study recommends that health centres in other regions use this model to simplify their work.

Keywords: Index testing; machine learning; random forest; xgboost; artificial neural network

Happyness Chikusi, Judith Leo and Shubi Kaijage, “Machine Learning Model for Prediction and Visualization of HIV Index Testing in Northern Tanzania” International Journal of Advanced Computer Science and Applications(IJACSA), 13(2), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130246

@article{Chikusi2022,
title = {Machine Learning Model for Prediction and Visualization of HIV Index Testing in Northern Tanzania},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130246},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130246},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {2},
author = {Happyness Chikusi and Judith Leo and Shubi Kaijage}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org