The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130256
PDF

FNU-BiCNN: Fake News and Fake URL Detection using Bi-CNN

Author 1: R. Sandrilla
Author 2: M. Savitha Devi

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 2, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Fake news (FN) has become a big problem in today's world, recognition partly to the widespread use of social media. A wide variety of news organizations and news websites post their stories on social media. It is important to verify that the information posted is genuine and obtained from reputable sources. The intensity and sincerity of internet news cannot be quantified completely and remains a challenge. We present an FNU-BiCNN model for identifying FN and fake URLs in this study by analyzing the correctness of a report and predicting its validity. Stop words and stem words with NLTK characteristics were employed during data pre-processing. Following that, we compute the TF-IDF using LSTM, batch normalization, and dense. The WORDNET Lemmatizer is used to choose the features. Bi-LSTM with ARIMA and CNN are used to train the datasets, and various machine learning techniques are used to classify them. By deriving credibility ratings from textual data, this model develops an ensemble strategy for concurrently learning the depictions of news stories, authors, and titles. To achieve greater accuracy while using Voting ensemble classifier and compared with several machine learning algorithms such as SVM, DT, RF, KNN, and Naive Bayes were tried, and it was discovered that the voting ensemble classifier achieved the highest accuracy of 99.99%. Classifiers' accuracy, recall, and F1-Score were used to assess their performance and efficacy.

Keywords: Bi-LSTM; CNN; WORDNET; machine learning; fake news and URL; ARIMA

R. Sandrilla and M. Savitha Devi, “FNU-BiCNN: Fake News and Fake URL Detection using Bi-CNN” International Journal of Advanced Computer Science and Applications(IJACSA), 13(2), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130256

@article{Sandrilla2022,
title = {FNU-BiCNN: Fake News and Fake URL Detection using Bi-CNN},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130256},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130256},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {2},
author = {R. Sandrilla and M. Savitha Devi}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org