The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130270
PDF

Detecting Ransomware within Real Healthcare Medical Records Adopting Internet of Medical Things using Machine and Deep Learning Techniques

Author 1: Randa ELGawish
Author 2: Mohamed Abo-Rizka
Author 3: Rania ELGohary
Author 4: Mohamed Hashim

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 2, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The Internet of Medical Things was immensely implemented in healthcare systems during the covid 19 pandemic to enhance the patient's circumstances remotely in critical care units while keeping the medical staff safe from being infected. However, Healthcare systems were severely affected by ransomware attacks that may override data or lock systems from caregivers' access. In this work, after obtaining the required approval, we have got a real medical dataset from actual critical care units. For the sake of research, a portion of data was used, transformed, and manifested using laboratory-made payload ransomware and successfully labeled. The detection mechanism adopted supervised machine learning techniques of K Nearest Neighbor, Support Vector Machine, Decision Trees, Random Forest, and Logistic Regression in contrast with deep learning technique of Artificial Neural Network. The methods of KNN, SVM, and DT successfully detected ransomware's signature with an accuracy of 100%. However, ANN detected the signature with an accuracy of 99.9%. The results of this work were validated using precision, recall, and f1 score metrics.

Keywords: Artificial neural networks; deep learning; healthcare system; internet of things; machine learning; supervised learning

Randa ELGawish, Mohamed Abo-Rizka, Rania ELGohary and Mohamed Hashim, “Detecting Ransomware within Real Healthcare Medical Records Adopting Internet of Medical Things using Machine and Deep Learning Techniques” International Journal of Advanced Computer Science and Applications(IJACSA), 13(2), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130270

@article{ELGawish2022,
title = {Detecting Ransomware within Real Healthcare Medical Records Adopting Internet of Medical Things using Machine and Deep Learning Techniques},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130270},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130270},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {2},
author = {Randa ELGawish and Mohamed Abo-Rizka and Rania ELGohary and Mohamed Hashim}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org