The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130365
PDF

A Review-based Context-Aware Recommender Systems: Using Custom NER and Factorization Machines

Author 1: Rabie Madani
Author 2: Abderrahmane Ez-zahout

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 3, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Recommender Systems depend fundamentally on user feedback to provide recommendation. Classical Recom-menders are based only on historical data and also suffer from several problems linked to the lack of data such as sparsity. Users’ reviews represent a massive amount of valuable and rich knowledge information, but they are still ignored by most of current recommender systems. Information such as users’ preferences and contextual data could be extracted from reviews and integrated into Recommender Systems to provide more accurate recommendations. In this paper, we present a Context Aware Recommender System model, based on a Bidirectional Encoder Representations from Transformers (BERT) pretrained model to customize Named Entity Recognition (NER). The model allows to automatically extract contextual information from reviews then insert extracted data into a Contextual Machine Factorization to compte and predict ratings. Empirical results show that our model improves the quality of recommendation and outperforms existing Recommender Systems.

Keywords: Recommender systems; context aware recommender systems; factorization machines; bidirectional encoder representa-tions from transformers; named entity recognition

Rabie Madani and Abderrahmane Ez-zahout, “A Review-based Context-Aware Recommender Systems: Using Custom NER and Factorization Machines” International Journal of Advanced Computer Science and Applications(IJACSA), 13(3), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130365

@article{Madani2022,
title = {A Review-based Context-Aware Recommender Systems: Using Custom NER and Factorization Machines},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130365},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130365},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {3},
author = {Rabie Madani and Abderrahmane Ez-zahout}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org