The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130380
PDF

A Novel Approach for Small Object Detection in Medical Images through Deep Ensemble Convolution Neural Network

Author 1: J. Maria Arockia Dass
Author 2: S. Magesh Kumar

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 3, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Small objects detection in medical image becomes an interesting field of research that helps the medical practitioners to focus on in-depth evaluation of diseases. The accurate localization and classification of objects face tremendous difficulty due to lower intensity of the images and distraction of pixel points that vary the decision on identifying the shape, structure etc. In many real-time cases, detection and classification of tiny objects in the medically treated images becomes mandatory. The proposed system is designed in the same criteria in which the semantic segmentation of tiny objects in the medical images is considered. The system design focused on implementing the model for different kinds of human organs such as lung and liver. The axial CT or PET images of Lung and Liver are considered as the prime input for the given system. Detection of tiny objects in the CT-PET images, segmenting it from the background and classification of segmented part as Tumor or Nodule is discussed. The preprocessed images are feature extracted after the morphology segmentation that determines the structural features of the tiny object being segmented. The feature vectors are nothing but the feature points from Kaze feature extraction and Morphology segmented image. These two inputs are fetched to the Deep ensemble Convolution neural network (DECNN) to obtain the dual classification results. Performing the quantitative measurements to evaluate the decision making system for nodule or tumor class is determined. The performance measure is done using accuracy, precision, recall and F1Score.

Keywords: Medical image processing; convolution neural network; lung tumor detection; early prediction; image enhancement

J. Maria Arockia Dass and S. Magesh Kumar, “A Novel Approach for Small Object Detection in Medical Images through Deep Ensemble Convolution Neural Network” International Journal of Advanced Computer Science and Applications(IJACSA), 13(3), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130380

@article{Dass2022,
title = {A Novel Approach for Small Object Detection in Medical Images through Deep Ensemble Convolution Neural Network},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130380},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130380},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {3},
author = {J. Maria Arockia Dass and S. Magesh Kumar}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org