The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130403
PDF

Soft-sensor of Carbon Content in Fly Ash based on LightGBM

Author 1: Liu Junping
Author 2: Luo Hairui
Author 3: Huang Xiangguo
Author 4: Peng Tao
Author 5: Zhu Qiang
Author 6: Hu XinRong
Author 7: He Ruhan

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 4, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The soft-sensor method of carbon content in fly ash is to predict and calculate the carbon content of boiler fly ash by modeling the distributed control system (DCS) data of thermal power stations. A novel data-driven soft-sensor model that combines data pre-processing, feature engineering and hyperparameter optimization for application in the carbon content of fly ash is presented. First, extract steady-state data by data mining technology. Second, twenty characteristics that may affect the carbon content in fly ash are identified as variables by feature engineering. Third, a LightGBM prediction model that captures the relation between the carbon content in fly ash and various DCS parameters is established and improves the prediction accuracy by the Bayesian optimization (BO) algorithm. Finally, to verify the prediction accuracy of the proposed model, a case study is carried out using the data of a coal-fired boiler in China. Results show that the proposed method yielded the best prediction accuracy and closely approximates the non-linear relationships between variables.

Keywords: LightGBM; carbon content; fly ash; soft-sensor; feature engineering; Bayesian optimization

Liu Junping, Luo Hairui, Huang Xiangguo, Peng Tao, Zhu Qiang, Hu XinRong and He Ruhan, “Soft-sensor of Carbon Content in Fly Ash based on LightGBM” International Journal of Advanced Computer Science and Applications(IJACSA), 13(4), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130403

@article{Junping2022,
title = {Soft-sensor of Carbon Content in Fly Ash based on LightGBM},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130403},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130403},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {4},
author = {Liu Junping and Luo Hairui and Huang Xiangguo and Peng Tao and Zhu Qiang and Hu XinRong and He Ruhan}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org