The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130430
PDF

Machine Learning Algorithms for Document Classification: Comparative Analysis

Author 1: Faizur Rashid
Author 2: Suleiman M. A. Gargaare
Author 3: Abdulkadir H. Aden
Author 4: Afendi Abdi

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 4, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Automated document classification is the machine learning fundamental that refers to assigning automatic categories among scanned images of the documents. It reached the state-of-art stage but it needs to verify the performance and efficiency of the algorithm by comparing. The objective was to get the most efficient classification algorithms according to the usage of the fundamentals of science. Experimental methods were used by collecting data from a sum of 1080 students and researchers from Ethiopian universities and a meta-data set of Banknotes, Crowdsourced Mapping, and VxHeaven provided by UC Irvine. 25% of the respondents felt that KNN is better than the other models. The overall analysis of performance accuracies through various parameters namely accuracy percentage of 99.85%, the precision performance of 0.996, recall ratio of 100%, F-Score 0.997, classification time, and running time of KNN, SVM, Perceptron and Gaussian NB was observed. KNN performed better than the other classification algorithms with a fewer error rate of 0.0002 including the efficiency of the least classification time and running time with ~413 and 3.6978 microseconds consecutively. It is concluded by looking at all the parameters that KNN classifiers have been recognized as the best algorithm.

Keywords: Document classification; machine learning algorithms; text classification; analysis

Faizur Rashid, Suleiman M. A. Gargaare, Abdulkadir H. Aden and Afendi Abdi, “Machine Learning Algorithms for Document Classification: Comparative Analysis” International Journal of Advanced Computer Science and Applications(IJACSA), 13(4), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130430

@article{Rashid2022,
title = {Machine Learning Algorithms for Document Classification: Comparative Analysis},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130430},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130430},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {4},
author = {Faizur Rashid and Suleiman M. A. Gargaare and Abdulkadir H. Aden and Afendi Abdi}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org