The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130450
PDF

Deep Learning Approach for Spoken Digit Recognition in Gujarati Language

Author 1: Jinal H. Tailor
Author 2: Rajnish Rakholia
Author 3: Jatinderkumar R. Saini
Author 4: Ketan Kotecha

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 4, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Speech Recognition is an emerging field in the area of Natural Language Processing which provides ease for human machine interaction with speech. Speech recognition for digits is useful for numbers oriented communication such as mobile number, scores, account number, registration code, social security code etc. This research paper seeks to achieve recognition of ten Gujarati digits from zero to nine (૦ to ૯) by using a deep learning approach. Dataset is generated with total 8 native speakers 4 male 4 female with the age group of 20 to 40. The dataset includes 2400 labeled audio clips of both genders. To implement a deep learning approach, Convolutional Neural Network (CNN) with MFCC is used to analyze audio clips to generate spectrograms. For the proposed approach three different experiments were performed with different dataset sizes as 1200, 1800 and 2400. With this approach maximum 98.7% accuracy is achieved for spoken digits in Gujarati language with 98% Precision and 98% Recall. It is analyzed from various experiments that increase in dataset size improves the accuracy rate for spoken digit recognition. No of epochs in CNN also improves accuracy to some extent.

Keywords: CNN; Deep learning; digit; Gujarati; speech recognition

Jinal H. Tailor, Rajnish Rakholia, Jatinderkumar R. Saini and Ketan Kotecha, “Deep Learning Approach for Spoken Digit Recognition in Gujarati Language” International Journal of Advanced Computer Science and Applications(IJACSA), 13(4), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130450

@article{Tailor2022,
title = {Deep Learning Approach for Spoken Digit Recognition in Gujarati Language},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130450},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130450},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {4},
author = {Jinal H. Tailor and Rajnish Rakholia and Jatinderkumar R. Saini and Ketan Kotecha}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org