The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130484
PDF

Plant Disease Detection using AI based VGG-16 Model

Author 1: Anwar Abdullah Alatawi
Author 2: Shahd Maadi Alomani
Author 3: Najd Ibrahim Alhawiti
Author 4: Muhammad Ayaz

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 4, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Agriculture and modern farming is one of the fields where IoT and automation can have a great impact. Maintaining healthy plants and monitoring their environment in order to identify or detect diseases is essential in order to maintain a maximum crop yield. The implementation of current high rocketing technologies including artificial intelligence (AI), machine learning, and deep learning has proved to be extremely important in modern agriculture as a method of advanced image analysis domain. Artificial intelligence adds time efficiency and the possibility of identifying plant diseases, in addition to monitoring and controlling the environmental conditions in farms. Several studies showed that machine learning and deep learning technologies can detect plant diseases upon analyzing plant leaves with great accuracy and sensitivity. In this study, considering the worth of machine learning for disease detection, we present a convolutional neural network VGG-16 model to detect plant diseases, to allow farmers to make timely actions with respect to treatment without further delay. To carry this out, 19 different classes of plants diseases were chosen, where 15,915 plant leaf images (both diseased and healthy leaves) were acquired from the Plant Village dataset for training and testing. Based on the experimental results, the proposed model is able to achieve an accuracy of about 95.2% with the testing loss being only 0.4418. The proposed model provides a clear direction toward a deep learning-based plant disease detection to apply on a large scale in future.

Keywords: Machine learning; VGG-16; disease detection; convolutional networks; Plant Village; modern farming

Anwar Abdullah Alatawi, Shahd Maadi Alomani, Najd Ibrahim Alhawiti and Muhammad Ayaz, “Plant Disease Detection using AI based VGG-16 Model” International Journal of Advanced Computer Science and Applications(IJACSA), 13(4), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130484

@article{Alatawi2022,
title = {Plant Disease Detection using AI based VGG-16 Model},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130484},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130484},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {4},
author = {Anwar Abdullah Alatawi and Shahd Maadi Alomani and Najd Ibrahim Alhawiti and Muhammad Ayaz}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org