The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130490
PDF

Emotions Classification from Speech with Deep Learning

Author 1: Andry Chowanda
Author 2: Yohan Muliono

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 4, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Emotions are the essential parts that convey mean-ing to the interlocutors during social interactions. Hence, recog-nising emotions is paramount in building a good and natural affective system that can naturally interact with the human interlocutors. However, recognising emotions from social inter-actions require temporal information in order to classify the emotions correctly. This research aims to propose an architecture that extracts temporal information using the Temporal model of Convolutional Neural Network (CNN) and combined with the Long Short Term Memory (LSTM) architecture from the Speech modality. Several combinations and settings of the architectures were explored and presented in the paper. The results show that the best classifier achieved by the model trained with four layers of CNN combined with one layer of Bidirectional LSTM. Furthermore, the model was trained with an augmented training dataset with seven times more data than the original training dataset. The best model resulted in 94.25%, 57.07%, 0.2577 and 1.1678 for training accuracy, validation accuracy, training loss and validation loss, respectively. Moreover, Neutral (Calm) and Happy are the easiest classes to be recognised, while Angry is the hardest to be classified.

Keywords: Emotions recognition; speech modality; temporal information; affective system

Andry Chowanda and Yohan Muliono, “Emotions Classification from Speech with Deep Learning” International Journal of Advanced Computer Science and Applications(IJACSA), 13(4), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130490

@article{Chowanda2022,
title = {Emotions Classification from Speech with Deep Learning},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130490},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130490},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {4},
author = {Andry Chowanda and Yohan Muliono}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org