The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Emotions Classification from Speech with Deep Learning

Author 1: Andry Chowanda
Author 2: Yohan Muliono

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2022.0130490

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 4, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Emotions are the essential parts that convey mean-ing to the interlocutors during social interactions. Hence, recog-nising emotions is paramount in building a good and natural affective system that can naturally interact with the human interlocutors. However, recognising emotions from social inter-actions require temporal information in order to classify the emotions correctly. This research aims to propose an architecture that extracts temporal information using the Temporal model of Convolutional Neural Network (CNN) and combined with the Long Short Term Memory (LSTM) architecture from the Speech modality. Several combinations and settings of the architectures were explored and presented in the paper. The results show that the best classifier achieved by the model trained with four layers of CNN combined with one layer of Bidirectional LSTM. Furthermore, the model was trained with an augmented training dataset with seven times more data than the original training dataset. The best model resulted in 94.25%, 57.07%, 0.2577 and 1.1678 for training accuracy, validation accuracy, training loss and validation loss, respectively. Moreover, Neutral (Calm) and Happy are the easiest classes to be recognised, while Angry is the hardest to be classified.

Keywords: Emotions recognition; speech modality; temporal information; affective system

Andry Chowanda and Yohan Muliono, “Emotions Classification from Speech with Deep Learning” International Journal of Advanced Computer Science and Applications(IJACSA), 13(4), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130490

@article{Chowanda2022,
title = {Emotions Classification from Speech with Deep Learning},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130490},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130490},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {4},
author = {Andry Chowanda and Yohan Muliono}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org