The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.01305108
PDF

COVID-19 Cases Detection from Chest X-Ray Images using CNN based Deep Learning Model

Author 1: Md Amirul Islam
Author 2: Giovanni Stea
Author 3: Sultan Mahmud
Author 4: Kh. Mustafizur Rahman

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 5, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: COVID-19 has recently manifested as one of the most serious life-threatening infections and is still circulating globally. COVID-19 can be contained to a considerable extent if a patient can know their COVID-19 infection at a possible earlier time, and they can be isolated from other individuals. Recently, researchers have explored AI (Artificial Intelligence) based technologies like deep learning and machine learning strategies to identify COVID-19 infection. Individuals can detect COVID-19 disease using their phones or computers, dispensing with the need for clinical specimens or visits to a diagnostic center. This can significantly reduce the risk of spreading COVID-19 farther from a probably infected patient. Motivated by the above, we propose a deep-learning model using CNN (Convolutional Neural Networks) to autonomously diagnose COVID-19 disease from CXR (Chest X-ray) images. The dataset used to train our model includes 10293 X-ray images, with 875 X-ray images from COVID-19 cases. The dataset contains three different classes of the tuple: COVID-19, pneumonia, and normal cases. The empirical outcomes show that the proposed model achieved 97%specificity, 96.3% accuracy, 96% precision, 96% sensitivity, and 96% F1-score, respectively, which are better than the available works, despite using a CNN with fewer layers than those.

Keywords: COVID-19; CNN; deep learning; machine learning; chest X-ray

Md Amirul Islam, Giovanni Stea, Sultan Mahmud and Kh. Mustafizur Rahman, “COVID-19 Cases Detection from Chest X-Ray Images using CNN based Deep Learning Model” International Journal of Advanced Computer Science and Applications(IJACSA), 13(5), 2022. http://dx.doi.org/10.14569/IJACSA.2022.01305108

@article{Islam2022,
title = {COVID-19 Cases Detection from Chest X-Ray Images using CNN based Deep Learning Model},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.01305108},
url = {http://dx.doi.org/10.14569/IJACSA.2022.01305108},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {5},
author = {Md Amirul Islam and Giovanni Stea and Sultan Mahmud and Kh. Mustafizur Rahman}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org