The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.01305109
PDF

BERT-based Approach to Arabic Hate Speech and Offensive Language Detection in Twitter: Exploiting Emojis and Sentiment Analysis

Author 1: Maha Jarallah Althobaiti

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 5, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The user-generated content on the internet including that on social media may contain offensive language and hate speech which negatively affect the mental health of the whole internet society and may lead to hate crimes. Intelligent models for automatic detection of offensive language and hate speech have attracted significant attention recently. In this paper, we propose an automatic method for detecting offensive language and fine-grained hate speech from Arabic tweets. We compare between BERT and two conventional machine learning techniques (SVM, logistic regression). We also investigate the use of sentiment analysis and emojis descriptions as appending features along with the textual content of the tweets. The experiments shows that BERT-based model gives the best results, surpassing the best benchmark systems in the literature, on all three tasks:(a) offensive language detection with 84.3% F1-score, (b) hate speech detection with 81.8% F1-score, and (c) fine-grained hatespeech recognition (e.g., race, religion, social class, etc.) with 45.1% F1-score. The use of sentiment analysis slightly improves the performance of the models when detecting offensive language and hate speech but has no positive effect on the performance of the models when recognising the type of the hate speech. The use of textual emoji description as features can improve or deteriorate the performance of the models depending on the size of the examples per class and whether the emojis are considered among distinctive features between classes or not.

Keywords: Deep learning; hate speech detection; offensive language detection; sentiment analysis; transformer-based model; BERT; emoji

Maha Jarallah Althobaiti, “BERT-based Approach to Arabic Hate Speech and Offensive Language Detection in Twitter: Exploiting Emojis and Sentiment Analysis” International Journal of Advanced Computer Science and Applications(IJACSA), 13(5), 2022. http://dx.doi.org/10.14569/IJACSA.2022.01305109

@article{Althobaiti2022,
title = {BERT-based Approach to Arabic Hate Speech and Offensive Language Detection in Twitter: Exploiting Emojis and Sentiment Analysis},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.01305109},
url = {http://dx.doi.org/10.14569/IJACSA.2022.01305109},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {5},
author = {Maha Jarallah Althobaiti}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org