The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130531
PDF

A Model for Classification and Diagnosis of Skin Disease using Machine Learning and Image Processing Techniques

Author 1: Shaden Abdulaziz AlDera
Author 2: Mohamed Tahar Ben Othman

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 5, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Skin diseases are a global health problem that is difficult to diagnose sometimes due to the disease’s complexity, and the time-consuming effort. In addition to the fact that skin diseases affect human health, it also affects the psycho-social life if not diagnosed and controlled early. The enhancement of images processing techniques and machine learning leads to an effective and fast diagnosis that help detect the skin disease early. This paper presents a model that takes an image of the skin affected by a disease and diagnose acne, cherry angioma, melanoma, and psoriasis. The proposed model is composed of five steps, i.e., image acquisition, preprocessing, segmentation, feature extraction, and classification. In addition to using the machine learning algorithms for evaluating the model, i.e., Support Vector Machine (SVM), Random Forest (RF), and K-Nearest Neighbor (K-NN) classifiers, and achieved 90.7%, 84.2%, and 67.1%, respectively. Also, the SVM classifier result of the proposed model was compared with other papers, and mostly the proposed model’s result is better. In contrast, one paper achieved an accuracy of 100%.

Keywords: Skin disease; image processing; classification; machine learning; diagnosis; SVM; RF; K-NN; acne; cherry angioma; melanoma; psoriasis

Shaden Abdulaziz AlDera and Mohamed Tahar Ben Othman, “A Model for Classification and Diagnosis of Skin Disease using Machine Learning and Image Processing Techniques” International Journal of Advanced Computer Science and Applications(IJACSA), 13(5), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130531

@article{AlDera2022,
title = {A Model for Classification and Diagnosis of Skin Disease using Machine Learning and Image Processing Techniques},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130531},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130531},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {5},
author = {Shaden Abdulaziz AlDera and Mohamed Tahar Ben Othman}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org