The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Call for Papers
  • Proposals
  • Guest Editors

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Soil Color as a Measurement for Estimation of Fertility using Deep Learning Techniques

Author 1: N Lakshmi Kalyani
Author 2: Kolla Bhanu Prakash

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2022.0130536

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 5, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Soil Behavior helps the farmer predict performance for growing crops, nutrient movement, and determine soil limitations. The traditional methods for soil classification in the laboratory require time and human resources and are expensive. This analysis examines the possibility of image recognition by artificial intelligence, with a machine learning technique called deep learning, to develop the cases that use artificial intelligence. This study performed deep learning with a model using a neural network. Neural Networks has used to evaluate relationships between the parameters of the three-dimensional coordinates resulting in soil classification and parameters. So Artificial Neural Networks (ANN) can be an effective tool for soil classification. This paper focused on AI techniques used to predict the soil type, advice the crop to yield, and discuss the transformed learning and benefits.

Keywords: Artificial neural networks; deep learning; soil classification; soil nutrients; data augmentation; transform learning

N Lakshmi Kalyani and Kolla Bhanu Prakash, “Soil Color as a Measurement for Estimation of Fertility using Deep Learning Techniques” International Journal of Advanced Computer Science and Applications(IJACSA), 13(5), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130536

@article{Kalyani2022,
title = {Soil Color as a Measurement for Estimation of Fertility using Deep Learning Techniques},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130536},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130536},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {5},
author = {N Lakshmi Kalyani and Kolla Bhanu Prakash}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2022

3-4 March 2022

  • Virtual

Computing Conference 2022

14-15 July 2022

  • Hybrid / London, UK

IntelliSys 2022

1-2 September 2022

  • Hybrid / Amsterdam

Future Technologies Conference (FTC) 2022

20-21 October 2022

  • Hybrid / Vancouver
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org