The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130613
PDF

Shallow Net for COVID-19 Classification Based on Biomarkers

Author 1: Mahmoud B. Rokaya

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 6, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In many cases, especially at the beginning of epidemic disaster, it is very important to be able to determine the severity of illness of a given patient. Picking up the severe status will help in directing the effort in a proper way. At the beginning, the number of classified status and the available data are limited, so, in such situation, one needs a system that can be trained based on limited data to give a trusted result. The current work focuses on the importance of the bioscience in differentiation between recovered patients and mortalities. Even with limited data, the decision trees (DT) was able to distinguish between recovered patients and mortalities with accuracy of 94%. Shallow dense network achieved accuracy of 75%. However, when a 10-fold technique was followed with the same data, the net achieved 99% of accuracy. The used data in this work was collected from King Faisal hospital in Taif city under a formal permission from the health ministry. PCA analysis confirmed that there are two parameters that have the greatest ability to differentiate between recovered patients and mortalities. ROC curve reveals that the parameters that can differentiate between recovered patients and mortalities are calcium and hemoglobin. The shallow net gives an accuracy of 92% when trained using calcium and hemoglobin only. This paper shows that with a suitable choosing of the parameters a small decision tree or shallow net can be trained quickly to decide which patient needs more attention so as to use the hospitals resources in a more reasonable way during the pandemic. All codes and data can be accessed from the following link “codes and data”.

Keywords: COVID-19; pandemic; shallow net; deep learning; decision trees; ROC curve; PCA analysis; biomarkers

Mahmoud B. Rokaya, “Shallow Net for COVID-19 Classification Based on Biomarkers” International Journal of Advanced Computer Science and Applications(IJACSA), 13(6), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130613

@article{Rokaya2022,
title = {Shallow Net for COVID-19 Classification Based on Biomarkers},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130613},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130613},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {6},
author = {Mahmoud B. Rokaya}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2025

28-29 April 2025

  • Berlin, Germany

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org