Future of Information and Communication Conference (FICC) 2025
28-29 April 2025
Publication Links
IJACSA
Special Issues
Future of Information and Communication Conference (FICC)
Computing Conference
Intelligent Systems Conference (IntelliSys)
Future Technologies Conference (FTC)
International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 6, 2022.
Abstract: In many cases, especially at the beginning of epidemic disaster, it is very important to be able to determine the severity of illness of a given patient. Picking up the severe status will help in directing the effort in a proper way. At the beginning, the number of classified status and the available data are limited, so, in such situation, one needs a system that can be trained based on limited data to give a trusted result. The current work focuses on the importance of the bioscience in differentiation between recovered patients and mortalities. Even with limited data, the decision trees (DT) was able to distinguish between recovered patients and mortalities with accuracy of 94%. Shallow dense network achieved accuracy of 75%. However, when a 10-fold technique was followed with the same data, the net achieved 99% of accuracy. The used data in this work was collected from King Faisal hospital in Taif city under a formal permission from the health ministry. PCA analysis confirmed that there are two parameters that have the greatest ability to differentiate between recovered patients and mortalities. ROC curve reveals that the parameters that can differentiate between recovered patients and mortalities are calcium and hemoglobin. The shallow net gives an accuracy of 92% when trained using calcium and hemoglobin only. This paper shows that with a suitable choosing of the parameters a small decision tree or shallow net can be trained quickly to decide which patient needs more attention so as to use the hospitals resources in a more reasonable way during the pandemic. All codes and data can be accessed from the following link “codes and data”.
Mahmoud B. Rokaya, “Shallow Net for COVID-19 Classification Based on Biomarkers” International Journal of Advanced Computer Science and Applications(IJACSA), 13(6), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130613
@article{Rokaya2022,
title = {Shallow Net for COVID-19 Classification Based on Biomarkers},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130613},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130613},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {6},
author = {Mahmoud B. Rokaya}
}
Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.