The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130614
PDF

Advanced Medicinal Plant Classification and Bioactivity Identification Based on Dense Net Architecture

Author 1: Banita Pukhrambam
Author 2: Arun Sahayadhas

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 6, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Plant species identification helps a wide range of stakeholders, including forestry services, botanists, taxonomists, physicians and pharmaceutical laboratories, endangered species organizations, the government, and the general public. As a result, there has been a spike in interest in developing automated plant species recognition systems. Using computer vision and deep learning approaches, this work proposes a fully automated system for finding medical plants. As a result, work is being done to classify the correct therapeutic plants based on their images. A training data set contains image data; this work uses the Indian Medicinal Plants, Photochemistry, and Therapeutics (IMPPAT) benchmark dataset. Convolutional Neural Network (CNN) with DenseNet algorithm is a classification system for medicinal plants that explains how they work and what they're efficient. This study also suggests a standard dataset for medicinal plants that can be found in various parts of Manipur, India's northwest coast state. On the IMPPAT dataset, the suggested DenseNet model has a recognition rate of 99.56% and on the Manipuri dataset; it has a recognition rate of 98.51%, suggesting that the DenseNet method is a promising technique for smart forestry.

Keywords: Indian medicinal plants; convolutional neural network; DenseNet; IMPPAT dataset

Banita Pukhrambam and Arun Sahayadhas, “Advanced Medicinal Plant Classification and Bioactivity Identification Based on Dense Net Architecture” International Journal of Advanced Computer Science and Applications(IJACSA), 13(6), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130614

@article{Pukhrambam2022,
title = {Advanced Medicinal Plant Classification and Bioactivity Identification Based on Dense Net Architecture},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130614},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130614},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {6},
author = {Banita Pukhrambam and Arun Sahayadhas}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2025

28-29 April 2025

  • Berlin, Germany

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org