The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Deep Convolution Neural Networks for Image Classification

Author 1: Arun D. Kulkarni

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2022.0130603

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 6, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Deep learning is a highly active area of research in machine learning community. Deep Convolutional Neural Networks (DCNNs) present a machine learning tool that enables the computer to learn from image samples and extract internal representations or properties underlying grouping or categories of the images. DCNNs have been used successfully for image classification, object recognition, image segmentation, and image retrieval tasks. DCNN models such as Alex Net, VGG Net, and Google Net have been used to classify large dataset having millions of images into thousand classes. In this paper, we present a brief review of DCNNs and results of our experiment. We have implemented Alex Net on Dell Pentium processor using MATLAB deep learning toolbox. We have classified three image datasets. The first dataset contains four hundred images of two types of animals that was classified with 99.1 percent accuracy. The second dataset contains four thousand images of five types of flowers that was classified with 86.64 percent accuracy. In the first and second dataset seventy percent randomly chosen samples from each class were used for training. The third dataset contains forty images of stained pleura tissues from rat-lungs are classified into two classes with 75 percent accuracy. In this data set eighty percent randomly chosen samples were used in training the model.

Keywords: Deep learning; convolutional neural networks; image classification; machine learning; object recognition

Arun D. Kulkarni, “Deep Convolution Neural Networks for Image Classification” International Journal of Advanced Computer Science and Applications(IJACSA), 13(6), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130603

@article{Kulkarni2022,
title = {Deep Convolution Neural Networks for Image Classification},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130603},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130603},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {6},
author = {Arun D. Kulkarni}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org