The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130639
PDF

An Efficient and Optimal Deep Learning Architecture using Custom U-Net and Mask R-CNN Models for Kidney Tumor Semantic Segmentation

Author 1: Sitanaboina S L Parvathi
Author 2: Harikiran Jonnadula

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 6, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Today, kidney medical imaging has become the backbone for health professionals in diagnosing kidney disease and determining its severity. Physicians commonly use Computerized Tomography (CT) and Magnetic Resonance Imaging (MRI) scan models to obtain kidney disease information. The significance and impact of kidney tumor analysis drew researchers to semantic segmentation of kidney tumors. Traditional image processing methodologies, in general, require more computational power and manual assistance to analyze kidney medical images for tumor segmentation. Deep Learning advances are enabling less computational and automated models for kidney medical image analysis and tumor lineation. Blobs (regions of interest) detection from medical images is gaining popularity in kidney disease diagnosis and is used widely in detecting tumors, glomeruli, and cell nuclei, among other things. Kidney Tumor segmentation is challenging compared to other segmentation models due to morphological diversity, object overlapping, intensity variance, and integrated noise. In this paper, It have proposed a kidney tumor semantic segmentation model based on CU-Net and Mask R-CNN to extract kidney tumor information from abdominal MR images. Initially, It trained the Custom U-Net architecture on abdominal MR images with kidney masks for kidney image segmentation. The Mask R-CNN model is then used to lineate tumors from kidney images. Experiments on abdominal MR images using Python image processing libraries revealed that the proposed deep learning architecture segmented the kidney images and lined up the tumors with high accuracy.

Keywords: Kidney tumor (Blob) detection; custom U-Net; mask R-CNN; semantic segmentation; deep learning; medical image processing

Sitanaboina S L Parvathi and Harikiran Jonnadula, “An Efficient and Optimal Deep Learning Architecture using Custom U-Net and Mask R-CNN Models for Kidney Tumor Semantic Segmentation” International Journal of Advanced Computer Science and Applications(IJACSA), 13(6), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130639

@article{Parvathi2022,
title = {An Efficient and Optimal Deep Learning Architecture using Custom U-Net and Mask R-CNN Models for Kidney Tumor Semantic Segmentation},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130639},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130639},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {6},
author = {Sitanaboina S L Parvathi and Harikiran Jonnadula}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org