The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130651
PDF

RS Invariant Image Classification and Retrieval with Pretrained Deep Learning Models

Author 1: D. N. Hire
Author 2: A. V. Patil

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 6, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: CBIR deals with seeking of related images from large dataset, like Internet is a demanding task. Since last two decades scientists are working in this area in various angles. Deep learning provided state-of-the art result for image categorization and recovery. But pre-trained deep learning models are not strong enough to rotation and scale variations. A technique is proposed in this work to improve the precision and recall of image retrieval. This method concentrates on the extraction of high-level features with rotation and scaling invariant from ResNet18 CNN (Convolutional Neural Network) model. These features used for segregation of images using VGG19 deep learning model. Finally, after classification if the class of given query image is correct, we will get the 100% results for both precision and recall as the ideal requirement of image retrieval technique. Our experimental results shows that not only our proposed technique outstrip current techniques for rotated and scaled query images but also it has preferable results for retrieval time requirements. The performance investigation exhibit that the presented method upgrades the average precision value from 76.50% for combined features DCD (Dominant Color Descriptor), wavelet and curvelet to 99.1% and average recall value from 14.21% to 19.82% for rotated and scaled images utilizing Corel dataset. Also, the average retrieval time required is 1.39 sec, which is lower than existing modern techniques.

Keywords: CBIR; CNN; deep learning; ResNet18; rotation; scale; VGG19

D. N. Hire and A. V. Patil, “RS Invariant Image Classification and Retrieval with Pretrained Deep Learning Models” International Journal of Advanced Computer Science and Applications(IJACSA), 13(6), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130651

@article{Hire2022,
title = {RS Invariant Image Classification and Retrieval with Pretrained Deep Learning Models},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130651},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130651},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {6},
author = {D. N. Hire and A. V. Patil}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2025

28-29 April 2025

  • Berlin, Germany

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org