The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130654
PDF

Multi-layer Stacking-based Emotion Recognition using Data Fusion Strategy

Author 1: Saba Tahseen
Author 2: Ajit Danti

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 6, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Electroencephalography (EEG), or brain waves, is a commonly utilized bio signal in emotion detection because it has been discovered that the data recorded from the brain seems to have a connection between motions and physiological effects. This paper is based on the feature selection strategy by using the data fusion technique from the same source of EEG Brainwave Dataset for Classification. The multi-layer Stacking Classifier with two different layers of machine learning techniques was introduced in this approach to concurrently learn the feature and distinguish the emotion of pure EEG signals states in positive, neutral and negative states. First layer of stacking includes the support vector classifier and Random Forest, and the second layer of stacking includes multilayer perceptron and Nu-support vector classifiers. Features are selected based on a Linear Regression based correlation coefficient (LR-CC) score with a different range like n1, n2,n3,n4 a, for d1 used n1 and n2 dataset ,for d2 dataset, combined dataset of n3 and n4 are used and developed a new dataset d3 which is the combination of d1 and d2 by using the feature selection strategy which results in 997 features out of 2548 features of the EEG Brainwave dataset with a classification accuracy of emotion recognition 98.75%, which is comparable to many state-of-the-art techniques. It has been established some scientific groundwork for using data fusion strategy in emotion recognition.

Keywords: Electroencephalograph (EEG); linear regression based correlation coefficient; feature selection; multi-layer stacking model; machine learning techniques; emotion recognition

Saba Tahseen and Ajit Danti, “Multi-layer Stacking-based Emotion Recognition using Data Fusion Strategy” International Journal of Advanced Computer Science and Applications(IJACSA), 13(6), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130654

@article{Tahseen2022,
title = {Multi-layer Stacking-based Emotion Recognition using Data Fusion Strategy},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130654},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130654},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {6},
author = {Saba Tahseen and Ajit Danti}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2025

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org