The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130664
PDF

Sparse Feature Aware Noise Removal Technique for Brain Multiple Sclerosis Lesions using Magnetic Resonance Imaging

Author 1: Swetha M D
Author 2: Aditya C R

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 6, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Medical Resonance Imaging (MRI) is non-radioactive-based medical imaging that provides a super-resolution of tissues. However, because of its complex nature using existing Deep Learning-based noise removal (i.e., Denoising) techniques, the reconstruction quality is poor and time-consuming. An extensive study shows very limited work has been done on Brain Multiple Sclerosis (MS) Lesions MRI. Designing an efficient noise removal technique will aid in improving MRI quality; thereby will aid in achieving better segmentation classification performance. In reducing computing time and enhancing image quality (i.e. reduce noise) this paper presents the Sparse Feature Aware Noise Removal (SFANR) technique for Brain MRI using Convolution Neural Network (CNN) architecture. A sparse-aware feature is incorporated into the patch-wise morphology learning model for removing noise in large-scale MRI MS lesion datasets. Experimental results demonstrated that our model SFANR outperforms all other state-of-art noise removal techniques in terms of Peak-Signal-Noise-Ratio (PSNR), Structural Similarity Index Metric (SSIM) with less running time.

Keywords: Convolution neural networks; deep learning; denoising; magnetic resonance imaging; morphology learning; multiple sclerosis; sparse features

Swetha M D and Aditya C R, “Sparse Feature Aware Noise Removal Technique for Brain Multiple Sclerosis Lesions using Magnetic Resonance Imaging” International Journal of Advanced Computer Science and Applications(IJACSA), 13(6), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130664

@article{D2022,
title = {Sparse Feature Aware Noise Removal Technique for Brain Multiple Sclerosis Lesions using Magnetic Resonance Imaging},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130664},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130664},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {6},
author = {Swetha M D and Aditya C R}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2025

28-29 April 2025

  • Berlin, Germany

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org