The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

BiDLNet: An Integrated Deep Learning Model for ECG-based Heart Disease Diagnosis

Author 1: S. Kusuma
Author 2: Jothi. K. R

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2022.0130692

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 6, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Every year, around 10 million people die due to heart attacks. The use of electrocardiograms (ECGs) is a vital part of diagnosing these conditions. These signals are used to collect information about the heart's rhythm. Currently, various limitations prevent the diagnosis of heart diseases. The BiDLNet model is proposed in this paper which aims to examine the capability of electrocardiogram data to diagnose heart disease. Through a combination of deep learning techniques and structural design, BiDLNet can extract two levels of features from the data. A discrete wavelet transform is a process that takes advantage of the features extracted from higher layers and then adds them to lower layers. An ensemble classification scheme is then made to combine the predictions of various deep learning models. The BiDLNet system can classify features of different types of heart disease using two classes of classification: binary and multiclass. It performed remarkably well in achieving an accuracy of 97.5% and 91.5%, respectively.

Keywords: Heart disease; ECG; deep learning; machine learning models; discrete wavelet transform

S. Kusuma and Jothi. K. R, “BiDLNet: An Integrated Deep Learning Model for ECG-based Heart Disease Diagnosis” International Journal of Advanced Computer Science and Applications(IJACSA), 13(6), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130692

@article{Kusuma2022,
title = {BiDLNet: An Integrated Deep Learning Model for ECG-based Heart Disease Diagnosis},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130692},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130692},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {6},
author = {S. Kusuma and Jothi. K. R}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org