The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130744
PDF

Prediction Models to Effectively Detect Malware Patterns in the IoT Systems

Author 1: Rawabi Nazal Alhamad
Author 2: Faeiz M. Alserhani

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 7, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The Widespread use of the Internet of Things (IoT) has influenced many domains including smart cities, cameras, wearables, smart industrial equipment, and other aspects of our daily lives. On the other hand, the IoT environment deals with a massive volume of data that needs to be kept secure from tampering or theft. Detection of security attacks against IoT context requires intelligent techniques rather than relying on signature matching. Machine learning (ML) and Deep Learning (DL) approaches are efficient to detect these attacks and predicting intrusion behavior based on unknown patterns. This study proposes the application of five deep and ML techniques for identifying malware in network traffic based on the IoT-23 dataset. Random Forest, Catboost, XGBoost, Convolutional Neural Network, and Long Short-Term Memory (LSTM) models are among the classifiers utilized. These algorithms have been selected to provide lightweight security systems to be deployed in the IoT devices rather than a centralized approach. The dataset was preprocessed to remove unnecessary or missing data, and then the most significant features were extracted using a feature engineering technique. The highest overall accuracy achieved was 96% by applying all classifiers except LSTM which recorded a lower accuracy.

Keywords: Internet of Things (IoT); malware deletion; random forest; Catboost; convolutional neural network; long short-term memory (LSTM); XGBoost

Rawabi Nazal Alhamad and Faeiz M. Alserhani, “Prediction Models to Effectively Detect Malware Patterns in the IoT Systems” International Journal of Advanced Computer Science and Applications(IJACSA), 13(7), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130744

@article{Alhamad2022,
title = {Prediction Models to Effectively Detect Malware Patterns in the IoT Systems},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130744},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130744},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {7},
author = {Rawabi Nazal Alhamad and Faeiz M. Alserhani}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org