The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130746
PDF

A Screening System for COVID-19 Severity using Machine Learning

Author 1: Abang Mohd Irham Amiruddin Yusuf
Author 2: Marshima Mohd Rosli
Author 3: Nor Shahida Mohamad Yusop

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 7, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: COVID-19 disease can be classified into various stages depending on the severity of the patient. Patients in severe stages of COVID-19 need immediate treatment and should be placed in a medical-ready environment because they are at high risk of death. Thus, hospitals need a fast and efficient method to screen large numbers of patients. The enormous amount of medical data in public repositories allows researchers to gain information and predict possible outcomes. In this study, we use a publicly available dataset from Springer Nature repository to discuss the performance of three machine learning techniques for prediction of severity of COVID-19: Random Forest (RF), Naïve Bayes (NB) and Gradient Boosting (GB). These techniques were selected for their good performance in medical predictive analytics. We measured the performance of the machine learning techniques using six measurements (accuracy, precision, recall, F1-score, sensitivity and specificity) in predicting COVID-19 severity. We found that RF generates the highest performance score, which is 78.4, compared with NB and GB. We also conducted experiments with RF to establish the critical symptoms in predicting COVID-19 severity, and the findings suggested that seven symptoms are substantial. Overall, the performance of various machine learning techniques to predict severity of COVID-19 using electronic health records indicates that machine learning can be successfully applied to determine specific treatment and effective triage.

Keywords: Severity prediction; COVID-19; random forest; Naïve Bayes; gradient boosting

Abang Mohd Irham Amiruddin Yusuf, Marshima Mohd Rosli and Nor Shahida Mohamad Yusop, “A Screening System for COVID-19 Severity using Machine Learning” International Journal of Advanced Computer Science and Applications(IJACSA), 13(7), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130746

@article{Yusuf2022,
title = {A Screening System for COVID-19 Severity using Machine Learning},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130746},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130746},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {7},
author = {Abang Mohd Irham Amiruddin Yusuf and Marshima Mohd Rosli and Nor Shahida Mohamad Yusop}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org