The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Effect of Feature Engineering Technique for Determining Vegetation Density

Author 1: Yuslena Sari
Author 2: Yudi Firmanul Arifin
Author 3: Novitasari Novitasari
Author 4: Mohammad Reza Faisal

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2022.0130776

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 7, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Vegetation density is one type of information collected from vegetation cover. Vegetation density influences evapotranspiration in terrain, which is essential in assessing how vulnerable peatlands are to fire. The Keetch and Byram Drought Index model, which evaluates peatland fire vulnerability, divides vegetation density into heavily grazed, softly grazed, and un-grazed. Manual approaches for analyzing vegetation density in the field, on the other hand, need a significant amount of resources. Image data acquisition, pre-processing, feature extraction, classification, feature selection, classification, and validation are all computer vision approaches used to solve these problems. Artificial intelligence algorithms and machine learning approaches promise outstanding accuracy in modern computer vision research. However, in the classification process, the impact of feature extraction is critical. Pattern identification at Back Propagation Neural Network (BPNN) is problematic because the feature extraction dimension is excessively complicated. The solution to this problem is using the feature engineering technique to choose the characteristics. This research aims to explore how feature engineering influences the accuracy of results. According to the statistics, implementing the recommended strategy can increase accuracy by 1% and increase kappa by 1.5%. This increase in vegetation density classification accuracy might help detect peatland vulnerability sooner. The novel aspect of this paper is that, after feature extraction, a feature engineering strategy is used in the machine learning classification stage to reduce the number of complex dimensions.

Keywords: Vegetation cover; vegetation density; feature extraction; feature engineering; accuracy

Yuslena Sari, Yudi Firmanul Arifin, Novitasari Novitasari and Mohammad Reza Faisal, “Effect of Feature Engineering Technique for Determining Vegetation Density” International Journal of Advanced Computer Science and Applications(IJACSA), 13(7), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130776

@article{Sari2022,
title = {Effect of Feature Engineering Technique for Determining Vegetation Density},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130776},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130776},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {7},
author = {Yuslena Sari and Yudi Firmanul Arifin and Novitasari Novitasari and Mohammad Reza Faisal}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org