The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130708
PDF

An SDN-based Decision Tree Detection (DTD) Model for Detecting DDoS Attacks in Cloud Environment

Author 1: Jeba Praba. J
Author 2: R. Sridaran

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 7, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Detecting Distributed Denial of Service (DDoS) attacks has become a significant security issue for various network technologies. This attack has to be detected to increase the system’s reliability. Though various traditional studies are present, they suffer from data shift issues and accuracy. Hence, this study intends to detect DDoS attacks by classifying the normal and malicious traffic. The study aims to solve the data shift issues by using the introduced Decision Tree Detection (DTD) model encompassing of Greedy Feature Selection (GFS) algorithm and Decision Tree Algorithm (DTA). It also attempts to enhance the proposed model’s detection rate (accuracy) above 90%. Various processes are involved in DDoS attack detection. Initially, the gureKddcup dataset is loaded to perform pre-processing. This process is essential for removing noisy data. After this, feature selection is performed to select only the relevant features, removing the irrelevant data. This is then fed into the train and test split. Following this, Software Defined Networking (SDN) based DTA is used to classify the normal and malicious traffic, then given to the trained model for predicting this attack. Performance analysis is undertaken by comparing the proposed model with existing systems in terms of accuracy, MCC (Matthew’s Correlation Coefficient), sensitivity, specificity, error rate, FAR (False Alarm Rate), and AUC (Area under Curve). This analysis is carried out to evaluate the efficacy of the proposed model, which is verified through the results.

Keywords: Distributed denial of service attack; greedy feature selection; decision tree algorithm; software defined networking; cloud and decision tree detection

Jeba Praba. J and R. Sridaran, “An SDN-based Decision Tree Detection (DTD) Model for Detecting DDoS Attacks in Cloud Environment” International Journal of Advanced Computer Science and Applications(IJACSA), 13(7), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130708

@article{J2022,
title = {An SDN-based Decision Tree Detection (DTD) Model for Detecting DDoS Attacks in Cloud Environment},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130708},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130708},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {7},
author = {Jeba Praba. J and R. Sridaran}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org