The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

An SDN-based Decision Tree Detection (DTD) Model for Detecting DDoS Attacks in Cloud Environment

Author 1: Jeba Praba. J
Author 2: R. Sridaran

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2022.0130708

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 7, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Detecting Distributed Denial of Service (DDoS) attacks has become a significant security issue for various network technologies. This attack has to be detected to increase the system’s reliability. Though various traditional studies are present, they suffer from data shift issues and accuracy. Hence, this study intends to detect DDoS attacks by classifying the normal and malicious traffic. The study aims to solve the data shift issues by using the introduced Decision Tree Detection (DTD) model encompassing of Greedy Feature Selection (GFS) algorithm and Decision Tree Algorithm (DTA). It also attempts to enhance the proposed model’s detection rate (accuracy) above 90%. Various processes are involved in DDoS attack detection. Initially, the gureKddcup dataset is loaded to perform pre-processing. This process is essential for removing noisy data. After this, feature selection is performed to select only the relevant features, removing the irrelevant data. This is then fed into the train and test split. Following this, Software Defined Networking (SDN) based DTA is used to classify the normal and malicious traffic, then given to the trained model for predicting this attack. Performance analysis is undertaken by comparing the proposed model with existing systems in terms of accuracy, MCC (Matthew’s Correlation Coefficient), sensitivity, specificity, error rate, FAR (False Alarm Rate), and AUC (Area under Curve). This analysis is carried out to evaluate the efficacy of the proposed model, which is verified through the results.

Keywords: Distributed denial of service attack; greedy feature selection; decision tree algorithm; software defined networking; cloud and decision tree detection

Jeba Praba. J and R. Sridaran, “An SDN-based Decision Tree Detection (DTD) Model for Detecting DDoS Attacks in Cloud Environment” International Journal of Advanced Computer Science and Applications(IJACSA), 13(7), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130708

@article{J2022,
title = {An SDN-based Decision Tree Detection (DTD) Model for Detecting DDoS Attacks in Cloud Environment},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130708},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130708},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {7},
author = {Jeba Praba. J and R. Sridaran}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org