The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130821
PDF

Determining the Best Email and Human Behavior Features on Phishing Email Classification

Author 1: Ahmad Fadhil Naswir
Author 2: Lailatul Qadri Zakaria
Author 3: Saidah Saad

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 8, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: There are many email filters that have been developed for classifying spam and phishing email. However, there is still a lack of phishing email filters developed because of the complexity of feature extraction and selection of the data. There are several categories of features for classifying phishing emails, either on the email part or on the human part. The absence of which features are best for helping to classify phishing emails is one of the challenges; in the previous experiment, there was no benchmark for the features to be used for phishing email classification. This research will provide new insight into the feature selection process in the phishing email classification area. Therefore, this work extracts the features based on the category and determines which features have the most impact on classifying email as phishing or not phishing using a machine learning approach. Feature selection is one of the essential parts of getting a good classification result. Therefore, obtaining the best features from email and human behavior will significantly impact phishing classification. This research collects the public phishing email dataset, extracts the features based on category using Python, and determines the feature importance using machine learning approaches with the PyCaret library. The dataset experimented on three different experiments in which each feature category was separated, and one experiment was the combined feature selection. Binary classification is also done with the extracted features. The experiment verified that the proposed method gave a good result in feature importance and the binary classification using selected features in terms of accuracy compared to previous research. The highest result obtained is the classification with combined features with 98% accuracy. The results obtained are better compared to previous studies. Hence, this research proves that the selected features will increase the performance of the classification.

Keywords: Phishing; phishing email classification; features selection; binary classification; email features; human features

Ahmad Fadhil Naswir, Lailatul Qadri Zakaria and Saidah Saad, “Determining the Best Email and Human Behavior Features on Phishing Email Classification” International Journal of Advanced Computer Science and Applications(IJACSA), 13(8), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130821

@article{Naswir2022,
title = {Determining the Best Email and Human Behavior Features on Phishing Email Classification},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130821},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130821},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {8},
author = {Ahmad Fadhil Naswir and Lailatul Qadri Zakaria and Saidah Saad}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org