The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Evaluation of Parameter Fine-Tuning with Transfer Learning for Osteoporosis Classification in Knee Radiograph

Author 1: Usman Bello Abubakar
Author 2: Moussa Mahamat Boukar
Author 3: Steve Adeshina

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2022.0130829

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 8, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Osteoporosis is a bone disease that raises the risk of fracture due to the density of the bone mineral being low and the decline of the structure of bone tissue. Among other techniques, such as Dual-Energy X-ray Absorptiometry (DXA), 2D x-ray pictures of the bone can be used to detect osteoporosis. This study aims to evaluate deep convolutional neural networks (CNNs), applied with transfer learning techniques, to categorize specific osteoporosis features in knee radiographs. For objective labeling, we obtained a selection of patient knee x-ray images. The study makes use of the Visual Geometry Group Deep (VGG-16), and VGG-16 with fine-tuning. In this work, the deployed CNNs were assessed using state-of-the-art metrics such as accuracy, sensitivity, and specificity. The evaluation shows that fine-tuning enhanced the VGG-16 CNN's effectiveness for detecting osteoporosis in radiographs of the knee. The accuracy of the VGG-16 with parameter fine-tuning was 88% overall, while the accuracy of the VGG-16 without parameter fine-tuning was 80%.

Keywords: Osteoporosis; transfer learning models; convolutional neural network; fine-tuning

Usman Bello Abubakar, Moussa Mahamat Boukar and Steve Adeshina, “Evaluation of Parameter Fine-Tuning with Transfer Learning for Osteoporosis Classification in Knee Radiograph” International Journal of Advanced Computer Science and Applications(IJACSA), 13(8), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130829

@article{Abubakar2022,
title = {Evaluation of Parameter Fine-Tuning with Transfer Learning for Osteoporosis Classification in Knee Radiograph},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130829},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130829},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {8},
author = {Usman Bello Abubakar and Moussa Mahamat Boukar and Steve Adeshina}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org