The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130857
PDF

Predicting Malicious Software in IoT Environment Based on Machine Learning and Data Mining Techniques

Author 1: Abdulmohsen Alharbi
Author 2: Md. Abdul Hamid
Author 3: Husam Lahza

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 8, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The Internet of Things (IoT) enable the IoT to sense and respond using the power of computing to autonomously come up with the best solutions for any industry today. However, Internet of Things have vulnerabilities since it can be hacked by cybercriminals. The cybercriminals know where the IoT vulnerabilities are, such as unsecured update mechanisms and malware (Malicious Software) to attack the IoT devices. The recently posted IoT-23 dataset based on several IoT devices such as Philips Hue, Amazon Echo devices and Somfy door lock were used for machine learning classification algorithms and data mining techniques with training and testing for predictive modelling of a variety of malware attacks like Distributed Denial of Service (DDoS), Command and Control (C&C) and various IoT botnets like Mirai and Okiru. This paper aims to develop predictive modeling that will predict malicious software to protect IoT and reduce vulnerabilities by using machine learning and data mining techniques. We collected, analyzed and processed benign and several of malicious software in IoT network traffic. Malware prediction is crucial in maintaining IoT devices’ safety and security from cybercriminals’ activities. Furthermore, the Principal Component Analysis (PCA) method was applied to determine the important features of IoT-23. In addition, this study compared with previous studies that used the IoT-23 dataset in terms of accuracy rate and other metrics. Experiments show that Random Forest (RF) classifier achieved the predictive model produced classification accuracy 0.9714% as well as predict 8754 samples with various types of malware and obtained 0.9644% of Area Under Curve (AUC) which outperforms several bassline machine learning classification models.

Keywords: Machine learning; internet of things; malware; predictive modeling; cyber threats

Abdulmohsen Alharbi, Md. Abdul Hamid and Husam Lahza, “Predicting Malicious Software in IoT Environment Based on Machine Learning and Data Mining Techniques” International Journal of Advanced Computer Science and Applications(IJACSA), 13(8), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130857

@article{Alharbi2022,
title = {Predicting Malicious Software in IoT Environment Based on Machine Learning and Data Mining Techniques},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130857},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130857},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {8},
author = {Abdulmohsen Alharbi and Md. Abdul Hamid and Husam Lahza}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org