The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130872
PDF

A Cross Platform Contact Tracing Mobile Application for COVID-19 Infections using Deep Learning

Author 1: Josephat Kalezhi
Author 2: Mathews Chibuluma
Author 3: Christopher Chembe
Author 4: Victoria Chama
Author 5: Francis Lungo
Author 6: Douglas Kunda

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 8, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The COVID-19 pandemic has remained a global health crisis following the declaration by the World Health Organization. As a result, a number of mechanisms to contain the pandemic have been devised. Popular among these are contact tracing to identify contacts and carry out tests on them in order to minimize the spread of the coronavirus. However, manual contact tracing is tedious and time consuming. Therefore, contact tracing based on mobile applications have been proposed in literature. In this paper, a cross platform contact tracing mobile application that uses deep neural networks to determine contacts in proximity is presented. The application uses Bluetooth Low Energy technologies to detect closeness to a Covid-19 positive case. The deep learning model has been evaluated against analytic models and machine learning models. The proposed deep learning model performed better than analytic and traditional machine learning models during testing.

Keywords: Contact tracing mobile application; coronavirus; COVID-19; deep neural networks

Josephat Kalezhi, Mathews Chibuluma, Christopher Chembe, Victoria Chama, Francis Lungo and Douglas Kunda, “A Cross Platform Contact Tracing Mobile Application for COVID-19 Infections using Deep Learning” International Journal of Advanced Computer Science and Applications(IJACSA), 13(8), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130872

@article{Kalezhi2022,
title = {A Cross Platform Contact Tracing Mobile Application for COVID-19 Infections using Deep Learning},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130872},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130872},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {8},
author = {Josephat Kalezhi and Mathews Chibuluma and Christopher Chembe and Victoria Chama and Francis Lungo and Douglas Kunda}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org