The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130875
PDF

Local Pre-Conditioning and Quality Enhancement to Handle Different Data Complexities in Contactless Fingerprint Classification

Author 1: Deepika K C
Author 2: G Shivakumar

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 8, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Biometric authentication systems have always been a fascinating approach to meet personalized security. Among the major existing solutions fingerprint-biometrics have gained widespread attention; yet, guaranteeing scalability and reliability over real-time demands remains a challenge. Despite innovations, the recent COVID-19 pandemic has capped the efficacy of the existing touch-based two-dimensional fingerprint detection models. Though, touchless fingerprint detection is considered as a viable alternative; yet, the real-time data complexities like non-linear textural patterns, dusts, non-uniform local conditions like illumination, contrast, orientation make it complex for realization. Moreover, the likelihood of ridge discontinuity and spatio-temporal texture damages can limit its efficacy. Considering these complexities, here, we focused on improving the input image intrinsic feature characteristics. More specifically, applied normalization, ridge orientation estimation, ridge frequency estimation, ridge masking and Gabor filtering over the input touchless fingerprint images. The proposed model mainly focusses on reducing FPR & EER by dividing the input image in to blocks and classify each input block as recoverable and nonrecoverable image block. Finally, an image with higher recoverable blocks with sufficiently large intrinsic features were considered for feature extraction and classification. The Proposed method outperforms when compared with the existing state of the art methods by achieving an accuracy of 94.72%, precision of 98.84%, recall of 97.716%, F-Measure 0.9827, specificity of 95.38% and a reduced EER of about 0.084.

Keywords: Ridge orientation; Gabor filtering; region masking; ridge frequency; contactless fingerprint

Deepika K C and G Shivakumar, “Local Pre-Conditioning and Quality Enhancement to Handle Different Data Complexities in Contactless Fingerprint Classification” International Journal of Advanced Computer Science and Applications(IJACSA), 13(8), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130875

@article{C2022,
title = {Local Pre-Conditioning and Quality Enhancement to Handle Different Data Complexities in Contactless Fingerprint Classification},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130875},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130875},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {8},
author = {Deepika K C and G Shivakumar}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org