The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Approximate TSV-based 3D Stacked Integrated Circuits by Inexact Interconnects

Author 1: Mahmoud S. Masadeh

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2022.0130878

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 8, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Three-Dimensional Stacked Integrated Circuit (3D-SICs) based on Through-Silicon Vias (TSVs) provide a high-density integration technology. However, integrating pre-tested dies requires post-bond interconnect testing, which is complex and costly. An imperfect TSV-based interconnect indicates a defective chip that should be rejected. Thus, it increases the yield loss and test cost. On the other hand, approximate computing (AC) is a promising design paradigm suitable for error-resilient applications, e.g., processing sensory-generated data, by judiciously sacrificing output accuracy. AC perform inexact operations and accepts inexact data. Thus, introducing AC into 3D-SICs will significantly ameliorate the efficiency of design approximation. Therefore, this work aims to increase the yield and reduce the test cost by accepting 3D-SICs with defected interconnects as approximate 3D-SICs. This work considers 3D-SICs, where the sensor is stacked on logic (CPU) which is stacked on memory (DRAM). Then, use the memory-based interconnect testing (MBIT) approach to detect and diagnose the faulty interconnect. Based on the detected fault location and type, and for a maximum allowed error, some sensory 3D-SICs with defected LSBs interconnects are accepted and used in error-resilient and data-intensive applications. Targeting data lines only, 50% of the defected interconnects, i.e., least significant bits (LSBs), were accepted as approximate. Thus, the proposed work was able to significantly increase the yield. Two applications, i.e., ECG signal compression and detecting of their R peaks,demonstrated the effectiveness of using a sensory device with a faulty data line in its least significant 8-bits. The approximate ECG signals have a compression rate higher than the exact with negligible (around 0.1%) reduced accuracy.

Keywords: Approximate computing; Three-Dimensional Inte-grated Circuit (3D IC); Through-Silicon Via (TSV); testing; approx-imate communications; approximate interconnect; yield; energy efficiency

Mahmoud S. Masadeh, “Approximate TSV-based 3D Stacked Integrated Circuits by Inexact Interconnects” International Journal of Advanced Computer Science and Applications(IJACSA), 13(8), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130878

@article{Masadeh2022,
title = {Approximate TSV-based 3D Stacked Integrated Circuits by Inexact Interconnects},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130878},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130878},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {8},
author = {Mahmoud S. Masadeh}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org