The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130886
PDF

CapNet: An Encoder-Decoder based Neural Network Model for Automatic Bangla Image Caption Generation

Author 1: Rashik Rahman
Author 2: Hasan Murad
Author 3: Nakiba Nuren Rahman
Author 4: Aloke Kumar Saha
Author 5: Shah Murtaza Rashid Al Masud
Author 6: A S Zaforullah Momtaz

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 8, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Automatic caption generation from images has be-come an active research topic in the field of Computer Vision (CV) and Natural Language Processing (NLP). Machine generated image caption plays a vital role for the visually impaired people by converting the caption to speech to have a better understanding of their surrounding. Though significant amount of research has been conducted for automatic caption generation in other languages, far too little effort has been devoted to Bangla image caption generation. In this paper, we propose an encoder-decoder based model which takes an image as input and generates the corresponding Bangla caption as output. The encoder network consists of a pretrained image feature extractor called ResNet-50, while the decoder network consists of Bidirectional LSTMs for caption generation. The model has been trained and evaluated using a Bangla image captioning dataset named BanglaLekhaIm-ageCaptions. The proposed model achieved a training accuracy of 91% and BLEU-1, BLEU-2, BLEU-3, BLEU-4 scores of 0.81, 0.67, 0.57, and 0.51 respectively. Moreover, a comparative study for different pretrained feature extractors such as VGG-16 and Xception is presented. Finally, the proposed model has been deployed on an embedded device for analysing the inference time and power consumption.

Keywords: Bangla image caption generation; encoder-decoder; bidirectional long short term memory (LSTM); bangla natural language processing (NLP)

Rashik Rahman, Hasan Murad, Nakiba Nuren Rahman, Aloke Kumar Saha, Shah Murtaza Rashid Al Masud and A S Zaforullah Momtaz, “CapNet: An Encoder-Decoder based Neural Network Model for Automatic Bangla Image Caption Generation” International Journal of Advanced Computer Science and Applications(IJACSA), 13(8), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130886

@article{Rahman2022,
title = {CapNet: An Encoder-Decoder based Neural Network Model for Automatic Bangla Image Caption Generation},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130886},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130886},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {8},
author = {Rashik Rahman and Hasan Murad and Nakiba Nuren Rahman and Aloke Kumar Saha and Shah Murtaza Rashid Al Masud and A S Zaforullah Momtaz}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org