The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130887
PDF

An Improved K-Nearest Neighbor Algorithm for Pattern Classification

Author 1: Zinnia Sultana
Author 2: Ashifatul Ferdousi
Author 3: Farzana Tasnim
Author 4: Lutfun Nahar

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 8, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: This paper proposed a “Locally Adaptive K-Nearest Neighbor (LAKNN) algorithm” for pattern exploration problem to enhance the obscenity of dimensionality. To compute neighborhood local linear discriminant analysis is an effective metric which determines the local decision boundaries from centroid information. KNN is a novel approach which uses in many classifications problem of data mining and machine learning. KNN uses class conditional probabilities for unfamiliar pattern. For limited training data in high dimensional feature space this hypothesis is unacceptable due to disfigurement of high dimensionality. To normalize the feature value of dissimilar metrics, Standard Euclidean Distance is used in KNN which s misguide to find a proper subset of nearest points of the pattern to be predicted. To overcome the effect of high dimensionality LANN uses a new variant of Standard Euclidian Distance Metric. A flexible metric is estimated for computing neighborhoods based on Chi-squared distance analysis. Chi-squared metric is used to ascertains most significant features in finding k-closet points of the training patterns. This paper also shows that LANN outperformed other four different models of KNN and other machine-learning algorithm in both training and accuracy.

Keywords: LANN algorithm; Standard Euclidian Distance; variance based Euclidian Distance; feature extraction; pattern classification

Zinnia Sultana, Ashifatul Ferdousi, Farzana Tasnim and Lutfun Nahar, “An Improved K-Nearest Neighbor Algorithm for Pattern Classification” International Journal of Advanced Computer Science and Applications(IJACSA), 13(8), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130887

@article{Sultana2022,
title = {An Improved K-Nearest Neighbor Algorithm for Pattern Classification},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130887},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130887},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {8},
author = {Zinnia Sultana and Ashifatul Ferdousi and Farzana Tasnim and Lutfun Nahar}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org